Preparation and evaluation of α-Al2O3 supported lithium ion sieve membranes for Li^+ extraction  被引量:8

在线阅读下载全文

作  者:Feng Xue Xiaoxian Zhang Yue Niu Chenhao Yi Shengui Ju Weihong Xing 

机构地区:[1]College of Chemical Engineering,Nanjing Tech University,Nanjing 211816,China

出  处:《Chinese Journal of Chemical Engineering》2020年第9期2312-2318,共7页中国化学工程学报(英文版)

基  金:This work was financially supported by National Key Research and Development Program(2018YFE0203502),China;Primary Research and Development Plan ofJiangsu Province(BE2019117),China and National Students'Platform for Innovation and Entrepreneurship Training(201910291051Z),China.

摘  要:Spinel lithium manganese oxide ion-sieves have been considered the most promising adsorbents to extract Li^+ from brines and sea water.Here,we report a lithium ion-sieve which was successfully loaded onto tubular α-Al2 O3 ceramic substrates by dipping crystallization and post-calcination method.The lithium manganese oxide Li4 Mn5 O(12)was first synthesized onto tubular α-Al2 O3 ceramic substrates as the ion-sieve precursor(i.e.L-AA),and the corresponding lithium ion-sieve(i.e.H-AA) was obtained after acid pickling.The chemical and morphological properties of the ion-sieve were confirmed by X-ray diffraction(XRD) and scanning electron microscopy(SEM).Both L-AA and H-AA showed characteristic peaks of α-Al2 O3 and cubic phase Li4 Mn5 O(12) and the peaks representing cubic phase could still exist after pickling.The lithium manganese oxide Li4 Mn5 O(12) could be uniformly loaded not only on the surface of α-Al2 O3 ubstrates but also inside the pores.Moreover,we found that the equilibrium adsorption capacity of H-AA was 22.9 mg·g^-1.After 12 h adsorption,the adsorption balance was reached.After 5 cycles of adsorption,the adsorption capacity of H-AA was 60.88% of the initial adsorption capacity.The process of H-AA adsorption for Li^+correlated with pseudo-second order kinetic model and Langmuir model.Adsorption thermodynamic parameters regarding enthalpy(△N), Gibbs free energy(△G) and entropy(AS) were calculated.For the dynamic adsorptiondesorption process of H-AA,the H-AA exhibited excellent adsorption performance to Li^+ with the Li^+ dynamic adsorption capacity of 9.74 mg·g^-1 and the Mn^2+dissolution loss rate of 0.99%.After 3 dynamic adsorption-desorption cycles,80% of the initial dynamic adsorption capacity was still kept.

关 键 词:LITHIUM α-Al2O3 tube Ion sieve ADSORPTION Li4Mn5O(12) 

分 类 号:TQ131.11[化学工程—无机化工] TQ424

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象