检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王恰 戚湧[1] WANG Qia;QI Yong(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
机构地区:[1]南京理工大学计算机科学与工程学院,南京210094
出 处:《计算机科学》2020年第10期174-179,共6页Computer Science
基 金:国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0108000);江苏省重点研发计划(产业前瞻与共性关键技术)项目(BE2017163)。
摘 要:针对城市道路交通视频难以直接提取交通背景,导致前景目标检测不准确的问题,提出了一种基于帧间差分和统计直方图的交通视频背景建模方法。一个好的背景建模方法有利于后续目标检测及跟踪任务的良好开展。所提方法首先利用帧间差分法提取视频中每帧的大致运动区域作为前景运动目标,再利用统计直方图获得图像的灰度值分布状态,进行背景图像的估计,从而提取出高整洁度、低噪声点的背景图像。与已有背景建模方法的对比实验结果表明,无论是在普通交通场景,还是在车辆行驶缓慢的典型交通场景中,所提方法都可以提取出与真实背景相似匹配度更高的背景图像。Aiming at the problem of inaccurate foreground object detection caused by the difficulty of extracting traffic background directly from urban road traffic video,a method for traffic video background modeling based on the combination of inter-frame difference and statistical histogram is proposed.A good background modeling method is conducive to the smooth development of subsequent object detecting and tracking tasks.Firstly,it uses inter-frame difference method to extract the approximate motion region of each frame in the video as the foreground moving object.Then,it uses statistical histogram to obtain the gray value distribution state of the image and estimates the background image,thereby a background image with high cleanliness and low noise points is extracted.Compared with the existing background modeling method,the experimental results show that the proposed method can extract the background image with higher matching degree with the real background,both in the ordinary traffic scenes and the typical traffic scene where vehicles are moving slowly.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7