检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Cheng-xiu QIANG Abdukadir OBUL
机构地区:[1]College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China [2]College of Mathematics and System Science,Xinjiang University,Urumqi 830046,China
出 处:《Acta Mathematicae Applicatae Sinica》2020年第4期825-835,共11页应用数学学报(英文版)
基 金:This paper is supported by the National Natural Science Foundation of China(No.11061033).
摘 要:In this paper,we give a Grobner-Shirshov basis of quantum group of type C3 by using the Ringel-Hall algebra approach.For this,first we compute all skew-commutator relations between the isoclasses of indecomposable reprersentations of Ringel-Hall algebras of type C3 by using an“inductive”method.Precisely,we do not use the traditional way of computing the skew-commutative relations,that is first compute all Hall polynomials then compute the corresponding skew-commutator relations;contrarily,we compute the“easier”skew-commutator relations which corresponding to those exact sequences with middile term indecomposable or the split exact sequences first,then“inductive”others from these“easier”ones and this in turn gives Hall polynomials as a byproduct.Then we prove that the set of these relations is closed under composition.So they constitutes a minimal Grobner-Shirshov basis of the positive part of quantum group of type C3.Dually,we get a Grobner-Shirshov basis of the negative part of quantum group of type C3.And finally we give a Grobner-Shirshov basis for the whole quantum group of type C3.
关 键 词:Ringel-Hall algebras root vectors indecomposable modules Grobner-Shirshov bases COMPOSITIONS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15