基于计盒维数的小波分形四叉树医学图像编码研究  

Research on Medical Imaging Coding of Fractal Quadtree in Wavelet Domain Based on Box-Counting Dimension

在线阅读下载全文

作  者:杜洋 范医鲁 曲新亮 DU Yang;FAN Yilu;QU Xinliang(Department of Railway Power Supply and Electrical Engineering,Shandong Polytechnic,Jinan Shandong 250104,China;Department of Medical Engineering,the First Affiliated Hospital of Shandong First Medical University,Jinan Shandong 250014,China)

机构地区:[1]山东职业学院铁道供电与电气工程系,山东济南250104 [2]山东第一医科大学第一附属医院医学工程部,山东济南250014

出  处:《中国医疗设备》2020年第10期172-175,共4页China Medical Devices

摘  要:目的为解决传统方法匹配时间长、编码时间长的问题,提出一种改进的医学图像编码算法。方法将计盒维数引入到小波分形四叉树医学图像编码算法中,首先构造小波分形四叉树与匹配树,并分别计算盒维数值,按匹配树盒维数与小波分形四叉树盒维数的差值绝对值由小到大的顺序选取匹配树进行匹配计算。通过仿真实验对本文方法进行有效性评价。结果相比传统小波分形四叉树方法,本文算法明显减少了四叉树的匹配时间和编码时间(P<0.05),仿真实验证明了本文方法的有效性。结论本文算法是一种有损的图像压缩方法,在某些对图像质量不苛求的情况下,本文算法是一种比较好的方法。Objective In order to solve the problem of long matching time and long coding time of traditional method,an improved medical image coding algorithm is proposed.Methods Box-counting dimension was introduced into medical imaging coding of fractal quadtree in wavelet domain.Firstly,wavelet fractal quadtrees and matching trees were constructed,and box-counting dimension was calculated,respectively.The matching tree was selected according to the order of the difference absolute value of the box dimension and the wavelet fractal quadtree box dimension from small to large.The effectiveness of the proposed algorithm was evaluated by simulation study.Results Compared with the traditional wavelet fractal quadtree method,the matching time and coding time of the proposed algorithm were significantly reduced(P<0.05).The simulation results proved the effectiveness of the proposed algorithm.Conclusion The proposed algorithm in this paper is a lossy image compression method,and it is a better one in some cases where the image quality is not exacting.

关 键 词:差分计盒维数 医学图像 分形四叉树 匹配树 编码 

分 类 号:R197.39[医药卫生—卫生事业管理] TN919[医药卫生—公共卫生与预防医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象