Time-Like Conformal Homogeneous Hypersurfaces with Three Distinct Principal Curvatures  被引量:3

在线阅读下载全文

作  者:Yanbin LIN Ying LU Changping WANG 

机构地区:[1]School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,Fujian,China [2]School of Mathematical Sciences,Xiamen University,Xiamen 361005,Fujian,China [3]College of Mathematics and Informatics,Fujian Normal University,Fuzhou 350117,China

出  处:《Chinese Annals of Mathematics,Series B》2020年第5期679-696,共18页数学年刊(B辑英文版)

基  金:supported by the Principal’s Fund(No.KJ2020002);the second is supported by the National Natural Science Foundation of China(Nos.11671330 and 11871405);the third is supported by the National Natural Science Foundation of China(Nos.11831005,1196131001).

摘  要:A hypersurface x(M)in Lorentzian space R41 is called conformal homogeneous,if for any two points p,q on M,there exists,a conformal transformation of R41,such that(x(M))=x(M),(x(p))=x(q).In this paper,the authors give a complete classifica-tion for regular time-like conformal homogeneous hypersurfaces in R41 with three distinct principal curvatures.

关 键 词:Lorentzian metric Conformal metric Conformal space form Conformal homogeneous Time-like hypersurface 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象