基于特征迭代的云存储数据即时确定性删除方法  被引量:4

Instantaneous deterministic deletion of cloud storage data based on feature iteration

在线阅读下载全文

作  者:张新华[1] Zhang Xinhua(Dept.of Computer Engineering,Taiyuan University,Taiyuan 030012,China)

机构地区:[1]太原学院计算机工程系,太原030012

出  处:《计算机应用研究》2020年第9期2840-2843,共4页Application Research of Computers

基  金:山西省教育厅项目(2018JG82,J2019219)。

摘  要:传统数据删除方法易受到云存储环境中大量近似特征的影响,产生冗余数据,导致加解密时间过长、密钥可用率较低,为此提出一种基于特征迭代的云存储数据即时确定性删除方法。首先,提取云存储数据中的冗余数据特征,对云存储下冗余数据进行分类,迭代直至收敛,实现冗余数据高性能删除;其次,采用加密机制实现云存储数据在网络用户间的安全共享,将原始数据密文切分为剩余密文和采样密文;最后,把不完整的剩余数据密文上传至云端,同时引入可信任第三方对取样密文进行保存,通过销毁取样密文实现数据即时确定性删除。实验结果表明,所提方法的数据密文拆分所用时间较短,且密钥可用率较高,可达90%,说明其方法能够有效满足云存储系统中对冗余数据或过期数据的确定性删除要求。The traditional data deletion method is easily affected by a large number of approximate features in the cloud storage environment,resulting in redundant data,resulting in too long encryption and decryption time and low key availability. This paper proposed a feature iteration-based deterministic deletion method for cloud storage data. Firstly,it extracted the redundant data characteristics in cloud storage data,and classified the redundant data under cloud storage,iterated until convergence,and the realized high performance deletion of redundant data. Secondly,it used the encryption mechanism to realize the secure sharing of cloud storage data among network users. The original data ciphertext divided into residual ciphertext and sampled ciphertext. Finally,it uploaded the incomplete remaining data ciphertext to the cloud,at the same time,introduced a trusted third party to save the sampled ciphertext,realized deterministic deletion of data by destroying sampled ciphertext. The experimental results show that the proposed method takes a short time to split data ciphertext and has a high key availability of 90%,indicating that it can effectively meet the requirement of deterministic deletion of redundant data or expire data in cloud storage systems.

关 键 词:特征迭代 云存储数据 即时 确定性删除 

分 类 号:TP302.7[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象