Complex Symmetric C0-semigroups on A^2(C+)  被引量:1

在线阅读下载全文

作  者:Kai Kai HAN Mao Fa WANG 

机构地区:[1]School of Mathematics and Statistics,Hebei University of Economics and Business,Shijiazhuang 050061,P.R.China [2]School of Mathematics and Statistics,Wuhan University,Wuhan 430072,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2020年第10期1171-1182,共12页数学学报(英文版)

基  金:NSFC (Grant No. 11771340)。

摘  要:In this paper,we study complex symmetric C0-semigroups on the Bergman space A^2(C+) of the right half-plane C+.In contrast to the classical case,we prove that the only involutive composition operator on A^2(C+) is the identity operator,and the class of J-symmetric composition operators does not coincide with the class of normal composition operators.In addition,we divide semigroups{φt}of linear fractional self-maps of C+into two classes.We show that the associated composition operator semigroup{Tt}is strongly continuous and identify its infinitesimal generator.As an application,we characterize Jσ-symmetric C0-semigroups of composition operators on A^2(C+).

关 键 词:C0-SEMIGROUP Bergman space composition operator complex symmetry 

分 类 号:O152.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象