检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋培军[1] JIANG Peijun(Automobile Institute, Sanmenxia Polytechnic, Sanmenxia 472000, Henan, China)
机构地区:[1]三门峡职业技术学院汽车学院,河南三门峡472000
出 处:《金刚石与磨料磨具工程》2020年第5期96-101,共6页Diamond & Abrasives Engineering
摘 要:为了准确预测工件表面及亚表面不同深度的温度场变化,基于反热源原理,以实际测量的磨削温度为基础,采用温度匹配法建立适应真实磨削加工时接触区的热源模型。运用有限元法,仿真计算工件磨削温度场的变化,并与瑞利分布热源模型预测结果对比,对工件表面及亚表面不同深度磨削弧区的磨削温度场进行测量。结果表明:基于温度匹配法建立的热源模型模拟的表面及亚表面不同深度温度场与实测值具有很好的一致性,相对误差在3.0%~7.5%,比瑞利热源模型预测的温度场分布精度提高了近2倍。To accurately predict temperature field changes of the surface and subsurface workpiece,based on the principle of anti-heat source and the actually measured grinding temperature,using the temperature matching method,a heat source model of the contact zone in the real grinding process was established.Comparing with prediction results of Rayleigh heat source model,the finite element method was used to simulate the change of the grinding temperature field of the workpiece.The grinding temperature field at different depths of the workpiece in the grinding zone was measured.The results show that the heat source model based on the temperature matching method has good consistency with the measured values at different depths on the surface and subsurface.The relative error is between 3.0%and 7.5%.Compared with the Rayleigh heat source model,the distribution accuracy of predicted temperature field is improved nearly 2 times.
分 类 号:TG58[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90