检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵泉[1] ZHAO Quan(Liaoning University of International Business and Economics,Dalian 116052,China)
出 处:《塑料科技》2020年第9期100-103,共4页Plastics Science and Technology
摘 要:针对时域故障信号难以诊断的问题,提出基于图的拉普拉斯矩阵变换的注塑编织机轴承故障诊断方法。通过拉普拉斯矩阵变换将时域信号转化为图域,将时域的快速傅立叶变换思想引入图信号处理中,将转化所得图信号进行图像的傅立叶变换(GFT)得到故障振动信号的阶次图,根据所得阶次计算故障振动信号的故障频率,由此进行轴承的故障诊断。经仿真及实例分析结果表明:相比将时域信号直接进行快速傅里叶变换的故障诊断方法,本实验方法故障识别能力更强。Aiming at the problem that time-domain fault signals are difficult to diagnose, a fault diagnosis method of injection knitting machine bearings based on graph Laplacian matrix transformation is proposed. Transform the time domain signal into the graph domain through Laplace matrix transformation, introduce the idea of fast Fourier transform in the time domain into the graph signal processing, and perform the graph Fourier transform(GFT) on the converted graph signal to obtain the fault vibration signal the order diagram. According to the obtained order, the fault frequency of the fault vibration signal is calculated, and thus the fault diagnosis of the bearing is carried out. The simulation and example analysis results show that: compared with the fault diagnosis method that directly performs the fast Fourier transform of the time domain signal, this experimental method has stronger fault identification ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28