检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lei Qu Chen Li Jiang Yan Rui Chen Jing Zhang Yanrong Wang Yayi Wei
机构地区:[1]North China University of Technology,Beijing 100144 [2]Key Laboratory of Microelectronic Devices and Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029
出 处:《Journal of Microelectronic Manufacturing》2020年第3期18-27,共10页微电子制造学报(英文)
摘 要:The Atomic Layer Deposition process(ALD)is widely used in FinFET,3D-NAND and other important technologies because of its self-limiting signature and low growth temperature.In recent years,the development of computer enables chances for ALD process simulation in order to improve the process R&D efficiency.In this paper,steady state theory and vacuum pump theory are implemented to develop the growth rate algorithm of atomic layer deposition.The dynamic evolution of the deposition profile is realized based on cellular automata method,and fits the relationship between temperature and growth rate in HfO2 deposition.The model accuracy and simulation results are verified with high reliability.Based on the simulation results of this model,the influence of different substrate size and environmental dose on growth rate of pore structure is studied and analyzed.In the case of deep hole,high depth-to-width ratio hole,or when the gas entry time is below saturation,the growth rate decreases at the pore bottom.Meanwhile,the simulation considering the angle-of-inclination of the hole’s tapered sidewall indicates that the greater the angle,the better the distribution of flux.
关 键 词:Atomic Layer Deposition process simulation profile model temperature fitting film of HfO2
分 类 号:TG1[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222