Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation  被引量:3

在线阅读下载全文

作  者:Ming Song Beidan Wang Jun Cao 宋明;王贝丹;曹军(Department of Mathematics,Shaoxing University,Shaoxing 312000,China;Department of Mathematics,Yuxi Normal University,Yuxi 653100,China)

机构地区:[1]Department of Mathematics,Shaoxing University,Shaoxing 312000,China [2]Department of Mathematics,Yuxi Normal University,Yuxi 653100,China

出  处:《Chinese Physics B》2020年第10期148-153,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant Nos. 11361069 and 11775146).

摘  要:We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.

关 键 词:bifurcation theory generalized modified dispersive water wave equation traveling wave solution 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象