检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ming Song Beidan Wang Jun Cao 宋明;王贝丹;曹军(Department of Mathematics,Shaoxing University,Shaoxing 312000,China;Department of Mathematics,Yuxi Normal University,Yuxi 653100,China)
机构地区:[1]Department of Mathematics,Shaoxing University,Shaoxing 312000,China [2]Department of Mathematics,Yuxi Normal University,Yuxi 653100,China
出 处:《Chinese Physics B》2020年第10期148-153,共6页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China (Grant Nos. 11361069 and 11775146).
摘 要:We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.
关 键 词:bifurcation theory generalized modified dispersive water wave equation traveling wave solution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.113