虚拟机迁移中一种新的物理主机异常状态检测算法  被引量:1

A New Physical Host Status Anomalous Detection Algorithm in Virtual Machine Migration

在线阅读下载全文

作  者:徐胜超 Xu Shengchao(School of Data Science,HuaShang College,Guangdong University of Finance&Ecnomics,Guangzhou 511300,China)

机构地区:[1]广东财经大学华商学院数据科学学院,广东广州511300

出  处:《计算机测量与控制》2020年第10期241-246,255,共7页Computer Measurement &Control

基  金:国家自然科学基金重点项目(60433040);国家自然科学基金项目(50577027);Intel大学合作计划。

摘  要:提出了一种新的物理主机异常状态检测算法PHSDA(physical host status anomalous detection algorithm);PHSDA算法包括两个阶段;在超负载检测中,采用一种迭代权重线性回归方法来预测物理资源的使用效率情况;在低负载检测中,利用多维物理资源的均方根来确定其资源使用阈值下限,避免异常状态的物理主机数量的增加;PHSDA检测算法配合迁移过程中后续的虚拟机选择策略和虚拟机放置策略,就可以形成一个全新的虚拟机迁移模型PHSDA-MMT-BFD;以CloudSim模拟器作为PHSDA的仿真环境;经PHSDA策略优化过后的新虚拟机迁移实验表明:与近几年的BenchMark迁移模型比较起来,可以很好地降低云数据中心的能量消耗,虚拟机迁移次数减少,云服务质量明显提高。A new physical host status anomalous detection algorithm called PHSDA was proposed in this paper.PHSDA includes two phases,overloading host detection and under loading host detection.In overloading host detection,it used an iterative weighted linear regression method to determine two utilization thresholds and avoid performance degradation.In under loading host detection,PHSDA used a vector magnitude squared of multiple resources to consolidate active hosts.United with Subsequent strategy in virtual machine selection and virtual machine placement,a novel virtual machine migration model called PHSDA-MMT-BFD had been formed.PHSDA had been evaluated using CloudSim tools.Experimental results show that compared with benchmark VM migration models,energy consumption and numbers of VM migration had been reduced in PHSDA.The Qos of cloud service provider had been also promoted.

关 键 词:智能计算 物理主机 虚拟机合并 虚拟机分配 物理主机状态检测 

分 类 号:TP393.093[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象