检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xinyu Jia Kaihang Sun Jing Wang Chenyang Shen Chang-jun Liu
机构地区:[1]School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
出 处:《Journal of Energy Chemistry》2020年第11期409-415,共7页能源化学(英文版)
基 金:the National Natural Science Foundation of China(No.21536008 and 21621004)。
摘 要:An In2O3 supported nickel catalyst has been prepared by wet chemical reduction with sodium borohydride(NaBH4) as a reducing agent for selective hydrogenation of carbon dioxide to methanol. Highly dispersed Ni species with intense Ni-In2O3 interaction and enhanced oxygen vacancies have been achieved.The highly dispersed Ni species serve as the active sites for hydrogen activation and hydrogen spillover.Abundant H adatoms are thereby generated for the oxygen vacancy creation on the In2O3 surface. The enhanced surface oxygen vacancies further lead to improved CO2 conversion. As a result, an effective synergy between the active Ni sites and surface oxygen vacancies on In2O3 causes a superior catalytic performance for CO2 hydrogenation with high methanol selectivity. Carbon monoxide is the only by product detected. The formation of methane can be ignored. When the reaction temperature is lower than 225 ℃,the selectivity of methanol is 100%. It is higher than 64% at the temperature range between 225 ℃ and 275 ℃. The methanol selectivity is still higher than 54% at 300 ℃ with a CO2 conversion of 18.47% and a methanol yield of 0.55 gMeOHg-1cath-1(at 5 MPa). The activity of Ni/In2O3 is higher than most of the reported In2O3-based catalysts.
关 键 词:METHANOL CO2 hydrogenation Indium oxide Ni/In2O3 Oxygen vacancy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.224.194