检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张璐 陈强 蒋蓓蓓 丁珍红 张丽[3] 解学乾[1] ZHANG Lu;CHEN Qiang;JIANG Bei-bei;DING Zhen-hong;ZHANG Li;XIE Xue-qian(Department of Radiology,Shanghai General Hospital,Shanghai Jiao Tong University,Shanghai 200080,China;Shukun(Beijing)Technology Co,Ltd.,Beijing 100102,China;Department of Cooperation and Exchange,Shanghai General Hospital,Shanghai Jiao Tong University,Shanghai 200080,China)
机构地区:[1]上海交通大学附属第一人民医院放射科,上海200080 [2]数坤(北京)网络科技有限公司,北京100102 [3]上海交通大学附属第一人民医院合作交流部,上海200080
出 处:《上海交通大学学报(医学版)》2020年第9期1229-1235,共7页Journal of Shanghai Jiao tong University:Medical Science
基 金:国家自然科学基金面上项目(81971612);科技部国际合作项目(2016YFE0103000);上海市教育委员会高峰高原学科建设计划(20181814);上海交通大学转化医学交叉研究项目(ZH2018ZDB10);上海市第一人民医院临床研究创新团队建设项目(CTCCR-2018B04,CTCCR-2019D05)。
摘 要:目的·探讨生成式对抗网络(generative adversarial network,GAN)去除冠状动脉(冠脉)CT血管成像(CT angiography,CTA)运动伪影的作用。方法·纳入行单心动周期扫描多时相重建的冠脉CTA受检者,随机选取约80%作为训练组,其余作为验证组用于验证模型的准确性。研究运动伪影最明显的右冠状动脉(right coronary artery,RCA)中段,将截取图像分为配对的有伪影图像和无伪影清晰参考图像。根据训练组建立GAN模型;在验证组中,使用图像分割软件ITK-SNAP把血管影像从周围组织中分割出来,包括有伪影的、GAN生成的和参考图像。计算有伪影-参考图像(dice1)和GAN生成-参考图像(dice2)的Dice系数。通过比较dice1和dice2的差异,评估GAN去除运动伪影的效果。结果·纳入90例受检者,随机选取71例(11000张图像)为训练组,其余19例(3006张图像)为验证组。基于受检者,RCA中段dice1和dice2分别为0.38±0.19和0.50±0.23,差异有统计学意义(P=0.006);基于图像,RCA中段dice1和dice2分别为0.38±0.20和0.51±0.26,差异有统计学意义(P=0.000)。结论·GAN能够显著减少RCA中段的CTA运动伪影,有望成为去除冠脉CTA图像运动伪影的新方法。Objective·To investigate the ability of generative adversarial network(GAN)to remove motion artifacts in coronary CT angiography(CTA)images.Methods·Subjects who underwent single-cardiac-cycle multi-phase CTA were included and divided into training and test group.The middle segment of the right coronary artery(RCA)was investigated because its motion artifact is the most prominent among all coronary branches.The patch image of the vessel with motion artifacts was extracted,and paired images without artifacts were considered as reference.The GAN model was established according to the training group.In the test group,vessel images were segmented out of the surrounding tissues by using ITK-SNAP software,including the vessel with artifacts,GAN-generated images and reference images.The Dice coefficients of the vessel with artifacts vs reference image(dice1)and GANgenerated images vs reference image(dice2)were calculated.By comparing the difference between dice1 and dice2,GAN’s ability in removing motion artifacts was evaluated.Results·Ninety subjects were included.Seventy-one(11000 images)were randomly selected as the training group,and the other 19(3006 images)were as the test group.Based on subjects,dice1 and dice2 of the middle segment of RCA were 0.38±0.19 and 0.50±0.23,respectively(P=0.006).Based on images,the values of the middle segment of RCA were 0.38±0.20 and 0.51±0.26,respectively(P=0.000).Conclusion·GAN can significantly reduce the motion artifacts of CTA in the middle segment of RCA and has the potential to act as a new method to remove motion artifacts of coronary CTA images.
关 键 词:人工智能 生成式对抗网络 冠状动脉CT血管成像 运动伪影
分 类 号:R445.3[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222