大数据挖掘技术支持下抽油机井系统效率影响因素分析  被引量:6

Analysis on Influencing Factors of Pumping Well System Efficiency Supported by Big Data Mining Technology

在线阅读下载全文

作  者:卢秋羽[1] 蒋薇 解文琦 苗夏楠 LU Qiu-yu;JIANG Wei;XIE Wen-qi;MIAO Xia-nan(School of Mechanical Science and Engineering,Northeast Petroleum University,Daqing 163318,China)

机构地区:[1]东北石油大学机械科学与工程学院,黑龙江大庆163318

出  处:《数学的实践与认识》2020年第19期246-252,共7页Mathematics in Practice and Theory

基  金:国家重点研发计划项目“能源与水纽带关系及高效绿色利用关键技术”(2016YFE0102400)。

摘  要:为了解决抽油机井系统效率影响因素复杂大量,且目前油田积累数据过多,传统方法无法对系统效率进行深度分析的问题.基于大数据挖掘技术对某区块抽油机系统效率影响因素进行了深度挖掘分析.采用Lasso-Lars算法对系统效率影响因素进行筛选,并通过十折交叉验证确保了可信度,最终确定了包括日产液量、泵效、含水、电机功率等22个重要影响因素.通过计算系统效率和影响因素的相关系数,将因素按对系统效率影响大小排序,其中日产液量和泵效影响更为明显.通过分析单井和区块的日产液量和系统效率的关系,得知系统效率随着日产液量的增加而增加.采用回归分析方法确定了沉没度最优的选择范围为379~527m,为提高抽油机系统效率提供了更多的可用信息.In order to solve the problem that the influencing factors of pumping well system efficiency are complex and there are too many data accumulated in oil field,the traditional method can not analyze the system efficiency in depth.Based on big data mining technology,this paper makes an in-depth mining analysis of the factors affecting the efficiency of pumping unit system in a certain block.The Lasso-Lars algorithm is used to screen the factors affecting the system efficiency,and the credibility is ensured by 10-fold cross validation.Finally,22 important influencing factors,including daily liquid production,pump efficiency,water cut,motor power and so on,are determined.By calculating the correlation coefficient between the system efficiency and the influencing factors,the factors are ranked according to the influence on the system efficiency,among which the influence of daily liquid production and pump efficiency is more obvious.By analyzing the relationship between daily liquid production and system efficiency in single well and block,it is found that the system efficiency increases with the increase of daily liquid production.By using the method of regression analysis,it is determined that the optimal selection range of submergence depth is 379~527 m,which provides more available information for improving the efficiency of pumping unit system.

关 键 词:抽油机 系统效率 大数据 Lasso 合理沉没度 

分 类 号:TE933[石油与天然气工程—石油机械设备]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象