检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曲晨 毕笃彦[2] Qu Chen;Bi Duyan(School of Management,Xi'an University of Finance and Economics,Xi'an,Shaanai 710100,China;Institute of Aevonautics and Astronautices,Air Force Engineeving Universitg,Xi'an,Shaanxi 710038,China)
机构地区:[1]西安财经大学管理学院,陕西西安710100 [2]空军工程大学航空工程学院,陕西西安710038
出 处:《激光与光电子学进展》2020年第18期157-164,共8页Laser & Optoelectronics Progress
基 金:国家自然科学基金(61372167,61701524)。
摘 要:针对目前单幅雾霾图像复原算法使用单一先验而产生先验盲区的问题,提出一种使用多先验约束的雾霾图像复原算法。首先,提出饱和度先验,使用定义的调节系数简化粗略传递图的求解过程;其次,在马尔科夫随机场模型中,使用颜色衰减先验进行约束并优化调节系数,求解得到精确传递图;接着,利用明暗像素先验得到精准的大气光;最后复原无雾图像。实验结果表明,其他算法与所提算法相比,有效细节强度分别降低了24.9%,51.4%,41.5%,39.3%,色调还原度分别降低了21.4%,24.8%,24.1%,29.5%,由此可知使用所提算法复原图像,图像中的有效细节信息丰富,色调自然,具有较强的适用性。This study focuses on the problem of a priori blind zone,which is generated by the current single-frame haze image restoration algorithm using a single prior.To address this problem,a haze image restoration algorithm using multiple prior constraints is proposed.First,the saturation prior is proposed,and the defined adjustment coefficient is used to simplify the process of solving the rough transfer diagram.Second,in the Markov random field model,the color attenuation prior is used to constrain and optimize the adjustment coefficient to obtain an accurate transfer diagram.Then,the light and dark pixels are used to obtain accurate atmospheric light a priori.Finally,the fog-free image is restored.Experimental results reveal that compared with other algorithms,Compared with the proposed algorithm,other algorithms have reduced the effective detail intensity by 24.9%,51.4%,41.5%,and 39.3%,respectively,and the hue reproduction has decreased by 21.4%,24.8%,24.1%,and 29.5%,respectively.The proposed algorithm successfully restores the image.Consequently,the effective detail information in the image becomes rich,and the color tone becomes natural.Moreover,it enables the image to have strong applicability.
关 键 词:图像处理 图像复原 饱和度先验 颜色衰减先验 明暗像素先验
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30