检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Thomas Huecker
机构地区:[1]University of Applied Sciences-HTW Berlin,Berlin D-12459,Germany
出 处:《Journal of Electrical Engineering》2020年第1期1-7,共7页电气工程(英文版)
摘 要:Partial discharge(PD)measurements are a standard method to determine insulation integrity since many years.For new equipment,the partial discharge level should be below a certain standardized level to be commissioned successfully.However,what is when a monitoring system detects upcoming partial discharges during the lifetime of an electrical equipment?Unfortunately,the discharge magnitude is not directly proportional to the remaining lifetime or the breakdown risk or breakdown voltage.Expert systems or experienced professionals can identify the PD defect root cause with a good certainty.This helps to determine the given risk.Nevertheless,clear risk quantification is missing.In this paper,a new approach is presented to predict the AC and lightning breakdown voltages of the equipment based on patterns from PD measurements.The method is validated with PD test data of several tip-plate configurations in air.A neuronal network is trained with these measurements.For control measurements with a different tip,it can be shown that the breakdown voltage can be predicted with an average failure of 5.3%for AC and 9.1%for lightning.
关 键 词:Breakdown voltage prediction partial discharges risk evaluation neural networks
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.36.197