Mineralogy,Fluid Inclusion and H-O-C-S Stable Isotopes of Mengqiguer Uranium Deposit in the Southern Yili Basin,Xinjiang:Implication for Ore Formation  被引量:5

在线阅读下载全文

作  者:DING Bo LIU Hongxu ZHANG Chuang LIU Hongjun LI Ping ZHANG Bin 

机构地区:[1]CNNC Key Laboratory of Uranium Resources Exploration and Evaluation Techniques,Beijing Research Institute of Uranium Geology,Beijing 100029,China [2]China Institute of Nuclear Information and Economics,Beijing 100048,China

出  处:《Acta Geologica Sinica(English Edition)》2020年第5期1488-1503,共16页地质学报(英文版)

基  金:financially supported by Ministry of Science and Technology(No.2015CB453004);China National Nuclear Corporation(No.LTD1612-4)。

摘  要:The Mengqiguer deposit in the southern Yili basin Ili Basin is a large interlayer-oxidation-zone type uranium deposit.In this paper,we applied multiple methods including microscopic observation,scanning electron microscope and electronic probe,to analyze the systematical alteration characteristics of the ore-bearing sandstone layer.Fluid inclusion and stable isotope studies on the ore-bearing sandstone have also been carried out to discuss the internal relations between fluid activities,epigenetic alteration and the uranium mineralization.Major epigenetic alteration include clay alteration,carbonatization and pyritization,of which biogenetic pyritization is most closely related to the uranium mineralization.This suggests the existence of microorganism during the uranium mineralization process.The mineralization fluids of low temperature,medium density but varied salinities are suggested to be derived from multi-source,including the meteoric water and organic acidic vapor components from coal-bearing strata.Uranium mineralization,grain-dispersed kaolinite,limonite,colloidal pyrite,and the carbonate cements associated with sulfate-reducing bacteria were formed by meteoric water and vermicular-shaped kaolinite,autologous pyrite,and the carbonate cementation associated with the dehydroxylation of organic matter was formed by organic acidic.Based on these results,we consider that the uranium mineralization and epigenetic alteration both resulted from the reciprocity of organic–inorganic fluid and fluid–rock during the formation of the interlayer oxidation zone.

关 键 词:Metallogenic fluid Epigenetic alteration Uranium metallogenic Mengqiguer sandstone type uranium deposit 

分 类 号:P619.14[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象