An improved method for image denoising based on fractional-order integration  被引量:6

在线阅读下载全文

作  者:Li XU Guo HUANG Qing-li CHEN Hong-yin QIN Tao MEN Yi-fei PU 

机构地区:[1]College of Electronics and Materials Engineering,Leshan Normal University,Leshan 614000,China [2]College of Computer Science,Sichuan University,Chengdu 610064,China [3]Key Lab of Internet Natural Language Processing of Sichuan Provincial Education Department,Leshan Normal University,Leshan 614000,China

出  处:《Frontiers of Information Technology & Electronic Engineering》2020年第10期1485-1493,共9页信息与电子工程前沿(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.61201438);the Key Project of Education Department of Sichuan Province,China(No.18ZA0235);the Research Fund of Key Laboratory of Internet Natural Language Processing of Sichuan Education Department,China(No.INLP201904);the Research Fund of Leshan Normal University,China(No.LZD003)。

摘  要:Given that the existing image denoising methods damage the texture details of an image,a new method based on fractional integration is proposed.First,the fractional-order integral formula is deduced by generalizing the Cauchy integral,and then the approximate value of the fractional-order integral operator is estimated by a numerical method.Finally,a fractional-order integral mask operator of any order is constructed in eight pixel directions of the image.Simulation results show that the proposed image denoising method can protect the edge texture information of the image while removing the noise.Moreover,this method can obtain higher image feature values and better image vision after denoising than the existing denoising methods,because a texture protection mechanism is adopted during the iterative processing.

关 键 词:Fractional-order integral Cauchy integral Image denoising Fractional gradient Texture protection 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象