检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何春龙[1] 周月华 钱恭斌[1] 丁雪 HE Chunlong;ZHOU Yuehua;QIAN Gongbin;DING Xue(College of Electronics and Information Engineering,Shenzhen University,Shenzhen 518060,Guangdong Province,P.R.China)
机构地区:[1]深圳大学电子与信息工程学院,广东深圳518060
出 处:《深圳大学学报(理工版)》2020年第6期567-575,共9页Journal of Shenzhen University(Science and Engineering)
基 金:国家自然科学基金资助项目(61601300);深圳市海外高层次人才创新创业专项资助项目(KQJSCX20180328093835762);深圳市基础研究计划资助项目(JCYJ20190808122409660)。
摘 要:双向分布式天线系统(bidirectional distributed antenna system,BDAS)是构建未来绿色通信的重要技术之一,但其在提高能效和降低能耗的同时,也给小区中的远程接入单元(remote access unit,RAU)与用户带来严重干扰.本研究提出在BDAS中构建基于机器学习的集群通信模式.首先,通过对BDAS中的用户进行聚类分析,将每个用户都归属一个集群;然后,根据集群中心与每个RAU的距离为集群中的用户选择通信所需的唯一服务基站;最后,在加入机器学习的集群BDAS中,对以最大化系统能量效率(energy efficiency,EE)和频谱效率(spectral efficiency,SE)为优化目标的功率分配方案进行求解.仿真结果表明,相比单一的BDAS,基于机器学习的集群双向分布式天线系统(BDAS based on machine learning generated clusters,BDAS-MLGC)能更有效地提高系统的SE和EE.The bidirectional distributed antenna system(BDAS)is one of the important technologies for building the green communication system in the future.However,BDAS also causes serious interference to the remote access units(RAU)and users while bringing the improvement of energy efficiency and reduction of energy consumption.In this paper,we propose a communication mode based on machine learning generated clusters.Firstly,each user belongs to a cluster through clustering analysis of users in BDAS.And then,according to the distance between the cluster center and each RAU,we chose the only serving base station for users in the cluster,and finally we solve out the power allocation scheme with the optimization objectives of maximizing the system energy efficiency(EE)and spectral efficiency(SE).Simulation results show that the BDAS-MLGC,which is called the bidirectional distributed antenna system based on machine learning generated clusters,can improve SE and EE of the system more effectively than single BDAS.
关 键 词:无线通信技术 机器学习 频谱效率 能量效率 K均值 高斯混合模型 分布式天线系统
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63