检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李金武[1] Li Jinwu(College of Information Engineering,Zhengzhou University of Science and Technology,Zhengzhou 450064,Henan,China)
机构地区:[1]郑州科技学院信息工程学院,河南郑州450064
出 处:《计算机应用与软件》2020年第11期239-245,291,共8页Computer Applications and Software
基 金:河南省科技攻关项目(142102210513)。
摘 要:为了更好地对时间序列连续型指标数据进行评价,最大限度提取局部数据特征值,提出一种自适应分段聚合云模型评价方法。依据云模型的熵判断分段聚合数据的稳定性,对稳定性极差的分段聚合数据重新进行分段聚合,自适应地形成稳定性较好的云模型数据序列。同时,综合考虑云模型的距离和形状,提出一种通过超熵值进行修正的云模型相似度评价方法,并对云模型数据序列进行评价。通过实验验证,对突发性较强的时间序列进行大幅度压缩时,该方法能够保证评价结果的准确性,评价结果符合预期。In order to better evaluate the time series continuous index data and extract local data eigenvalues to the maximum extent,this paper proposes a self-adaption piecewise aggregate evaluation of cloud model.According to the entropy of cloud model,the stability of piecewise aggregate data was judged.The piecewise aggregate data with poor stability were divided to form the cloud model data sequence with good stability adaptively.Considering the distance and shape of the cloud model,a cloud model similarity evaluation method modified by the hyperentropy value was proposed,and the cloud model data sequence was evaluated.The experimental results show that the method can ensure the accuracy of the evaluation results when the sudden strong time series are compressed to a large extent,and the evaluation results are in line with the expectation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.227.24