基于机器视觉的卷烟小盒商标纸表面缺陷在线检测技术  被引量:19

On-line detection technology of label paper surface defects of small cigarette packs based on machine vision

在线阅读下载全文

作  者:刘浩 贺福强[1] 李荣隆[1] 龚立朋 聂文豪 何昊 LIU Hao;HE Fuqiang;LI Ronglong;GONG Lipeng;NIE Wenhao;HE Hao(School of Mechanical Engineering,Guizhou University,No.2708,South Section of Huaxi Avenue,Huaxi District,Guiyang City,Guiyang 550025,China;Guizhou Xiniuwang printing Co.Ltd,No.53 Houba Road,Gaicha Industrial Zone,Yunyan District,Guiyang City,Guiyang 550025,China)

机构地区:[1]贵州大学机械工程学院,550025 [2]贵州西牛王印务有限公司,550025

出  处:《中国烟草学报》2020年第5期54-59,共6页Acta Tabacaria Sinica

基  金:贵州省科技计划项目(黔科合支撑[2018]2172)。

摘  要:【目的】为检测卷烟小盒商标纸表面多种质量缺陷,提高缺陷检测准确率和检测速度。【方法】以标准图像的定位点通过偏移和相似度量实现快速定位配准,并改进图像差分算法进行实验。【结果】(1)待测图像与标准图像存在一定的偏移,其中最大偏移量为3.6 mm,最大偏移角度为2.1°,最快配准99张图像只需2.484 s。(2)传统差分算法检测图像速度为18.24 s,改进算法检测最快速度为15.62 s,改进后的平均准确率提高了15.23%。【结论】卷烟小盒商标纸表面缺陷在线检测技术速度快、准确率高,减轻了人工检测商标纸的工作量。[Objective]This study aims to detect a variety of quality defects on the surface of the label paper of small cigarette packs,and improve the accuracy and speed of defect detection.[Methods]The positioning points of standard images are used to realize rapid positioning and registration through offset and similarity measures and the image difference algorithm is improved.[Results](1)There is a certain offset between the image to be tested and the standard image,where the maximum offset is 3.6 mm and the maximum offset angle is 2.1°.It only takes 2.484 s to realize registration of 99 images.(2)The detection of the traditional difference algorithm can be finished within 18.24 s,and that of the improved algorithm can be finished within 15.62 s.The average accuracy of the improved algorithm is increased by 15.23%.[Conclusion]The on-line detection technology for the surface defects of the label paper of small cigarette packs is fast and accurate,which reduces the workload of manual label paper detection.

关 键 词:商标纸缺陷 在线检测 机器视觉 快速配准 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TS452.7[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象