Detecting Anomalous Bus-Driving Behaviors from Trajectories  

在线阅读下载全文

作  者:Zhao-Yang Wang Bei-Hong Jin Tingjian Ge Tao-Feng Xue 

机构地区:[1]State Key Laboratory of Computer Science,Institute of Software,Chinese Academy of Sciences,Beijing 100190,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]Department of Computer Science,University of Massachusetts Lowell,Lowell,MA 01854,U.S.A.

出  处:《Journal of Computer Science & Technology》2020年第5期1047-1063,共17页计算机科学技术学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant Nos.61802373 and 61472408;Tingjian Ge was supported in part by the National Science Foundation of USA under Grant Nos.IIS-1149417 and IIS-1633271.

摘  要:In urban transit systems,discovering anomalous bus-driving behaviors in time is an important technique for monitoring the safety risk of public transportation and improving the satisfaction of passengers.This paper proposes a two-phase approach named Cygnus to detect anomalous driving behaviors from bus trajectories,which utilizes collected sensor data of smart phones as well as subjective assessments from bus passengers by crowd sensing.By optimizing support vector machines,Cygnus discovers the anomalous bus trajectory candidates in the first phase,and distinguishes real anomalies from the candidates,as well as identifies the types of driving anomalies in the second phase.To improve the anomaly detection performance and robustness,Cygnus introduces virtual labels of trajectories and proposes a correntropy-based policy to improve the robustness to noise,combines the unsupervised anomaly detection and supervised classification,and further refines the classification procedure,thus forming an integrated and practical solution.Extensive experiments are conducted on real-world bus trajectories.The experimental results demonstrate that Cygnus detects anomalous bus-driving behaviors in an effective,robust,and timely manner.

关 键 词:anomaly detection bus trajectory crowd sensing bus-driving safety 

分 类 号:U46[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象