检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yi-Fan Chen Xiang Zhao Jin-Yuan Liu Bin Ge Wei-Ming Zhang
机构地区:[1]Science and Technology on Information Systems Engineering Laboratory,National University of Defense Technology,Changsha 410073,China [2]Academy of Military Sciences,Beijing 100091,China
出 处:《Journal of Computer Science & Technology》2020年第5期1217-1230,共14页计算机科学技术学报(英文版)
基 金:supported by the National Natural Science Foundation of China under Grant Nos.61872446,61902417,71690233,and 71971212;the Natural Science Foundation of Hunan Province of China under Grant No.2019JJ20024.
摘 要:The problem of recommending new items to users(often referred to as item cold-start recommendation)remains a challenge due to the absence of users’past preferences for these items.Item features from side information are typically leveraged to tackle the problem.Existing methods formulate regression methods,taking item features as input and user ratings as output.These methods are confronted with the issue of overfitting when item features are high-dimensional,which greatly impedes the recommendation experience.Availing of high-dimensional item features,in this work,we opt for feature selection to solve the problem of recommending top-N new items.Existing feature selection methods find a common set of features for all users,which fails to differentiate users1 preferences over item features.To personalize feature selection,we propose to select item features discriminately for different users.We study the personalization of feature selection at the level of the user or user group.We fulfill the task by proposing two embedded feature selection models.The process of personalized feature selection filters out the dimensions that are irrelevant to recommendations or unappealing to users.Experimental results on real-life datasets with high-dimensional side information reveal that the proposed method is effective in singling out features that are crucial to top-N recommendation and hence improving performance.
关 键 词:high-dimensionality item cold-start top-TV recommendation personalized feature selection
分 类 号:TK4[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.204