检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:单义明 杨侃[1] 吴云 华萍[3] 汤梓杰 SHAN Yiming;YANG Kan;WU Yun;HUA Ping;TANG Zijie(College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;Shanxi Water Conservancy Vocational and Technical College,Yuncheng 044004,China;Jiangsu Water Resources Service Center,Nanjing 210098,China)
机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]山西水利职业技术学院,山西运城044004 [3]江苏省水资源服务中心,江苏南京210098
出 处:《人民黄河》2020年第11期42-47,共6页Yellow River
基 金:山西省水利科学技术计划项目(2017DSW02)。
摘 要:针对区域缺水风险以及水资源配置中的不确定性与复杂性,在传统两阶段随机规划与区间线性规划的基础上,加入鲁棒性优化方法形成区间两阶段随机鲁棒规划(ITSRP)模型,不仅可以用离散的区间数表示水资源配置中的多重不确定性,而且可以实现模型的最优化目标与系统稳定性,提高模型的可靠性。将该模型应用于吕梁市的水资源优化配置中,当模型的鲁棒性因子达到一定值时,不同概率水平下的目标函数值均达到最优,最终得到吕梁市2025年水资源优化配置结果,表明模型具有较好的适用性。In view of the regional water shortage risk and the uncertainty and complexity in the allocation of water resources,on the basis of the traditional two⁃stage stochastic programming and interval linear programming,robust optimization methods were added to form an interval two⁃stage stochastic robust programming(ITSRP)model.The model could not only express the multiple uncertainties in the allocation of wa⁃ter resources with discrete interval numbers,but also realize the optimization goal and system stability of the model,and improve the reliabili⁃ty of the model.The model was applied to the optimal allocation of water resources in Lyuliang City.When the robustness factor of the model reached a certain value,the objective function values under different probability levels reached the optimal values,and finally the results of the optimal allocation of water resources in Lyuliang City in 2025 were obtained which showed that the model had good applicability.
关 键 词:水资源配置 不确定性 区间两阶段随机鲁棒规划 鲁棒性优化 吕梁市
分 类 号:TV213.9[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15