载频不同分布方式下RSF波形稀疏重构性能分析  

Performance analysis of RSF waveform sparse reconstruction with different carrier frequency distribution

在线阅读下载全文

作  者:吕明久[1] 徐芳[1] 赵丽[1] 陈莉[1] 陈浩[1] LV Mingjiu;XU Fang;ZHAO Li;CHEN Li;CHEN Hao(Air Force Early Warning Academy,Wuhan 430019,China)

机构地区:[1]空军预警学院,武汉430019

出  处:《空军预警学院学报》2020年第5期319-324,共6页Journal of Air Force Early Warning Academy

基  金:国家自然科学基金资助项目(61671469)。

摘  要:鉴于当前基于压缩感知理论的稀疏重构方法大多针对的是载频服从离散均匀分布的随机步进频率信号,而对于载频服从其他分布的随机步进频率波形稀疏重构性能研究较少的实际,对载频不同分布方式下的随机步进频率波形稀疏重构性能进行了分析比较.首先,构建了随机步进频率波形统一的稀疏重构模型;然后,基于感知矩阵互相关系数的统计特性对不同载频分布下的重构性能进行了分析,得出载频分布方式决定了波形重构性能的结论.最后,为验证上述结论,提出了一种基于遗传算法的随机步进频率波形载频优化设计方法,提升了随机步进频率波形的稀疏重构性能.仿真结果对上述分析以及波形优化方法进行了验证.In view of the situation that most of the current sparse reconstruction methods based on compressed sensing theory are aimed at random stepping frequency(RSF)signals whose carrier frequency obeys discrete uniform distribution,while fewer studies are made on the sparse reconstruction performance of RSF waveforms whose carrier frequency is subject to other distributions,this paper analyzes and compares on the sparse reconstruction performance of RSF waveform with different carrier frequency distribution.Firstly,a uniform sparse representation model of RSF waveform is constructed,and then,the performance of reconstruction under different distribution is analyzed based on the cross-correlation coefficient of sensing matrix,and the conclusion is obtained that the carrier frequency distribution mode determines the waveform reconstruction performance.Finally,in order to verify the above conclusion,the paper proposes a genetic-algorithm-based optimal design method for carrier frequency of RSF waveform,which improves the sparse reconstruction performance.Simulation results verify the above analysis and waveform optimization methods.

关 键 词:随机步进频率信号 压缩感知 感知矩阵 波形设计 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象