检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨姗姗 姜丽芬[1] 孙华志[1] 马春梅[1] YANG Shanshan;JIANG Lifen;SUN Huazhi;MA Chunmei(College of Computer and Information Engineering,Tianjin Normal University,Tianjin 300387,China)
机构地区:[1]天津师范大学计算机与信息工程学院,天津300387
出 处:《计算机工程》2020年第11期97-103,共7页Computer Engineering
基 金:天津市自然科学基金(18JCQNJC70200,18JCYBJC85900)。
摘 要:机器阅读理解是自然语言处理领域中一项具有挑战性的任务,其旨在回答与文章相关的问题,且需要复杂的语义推理。针对现有机器阅读理解方法提取特征时存在一定程度的信息丢失,且无法捕获全局的语义关系等问题,在时间卷积网络(TCN)的基础上,构建一种多项选择机器阅读理解M-TCN模型。采用注意力机制对文章、问题和候选答案进行匹配,并建立三者之间的内在联系。同时,为提取高层特征以减少信息丢失,利用TCN对匹配表示进行聚合。通过在公开阅读理解RCAE数据集上验证模型的性能,实验结果表明,与现有机器阅读理解模型ElimiNet、MRU、HCM等相比,该模型对正确答案的预测精度达到了52.5%,且综合性能更优。As a challenging task in the field of natural language processing,machine reading comprehension aims to answer questions related to articles and requires complex semantic reasoning.To solve the problem of information loss and inability to capture the global semantic relationship in feature extraction of existing machine reading comprehension methods,this paper constructs a multiple choice machine reading comprehension M-TCN model based on Temporal Convolutional Network(TCN).Attention mechanism is used to match articles,questions and candidate answers,and the internal relationship among them is established.At the same time,in order to extract high-level features to reduce information loss,TCN is used to aggregate the matching representation.The performance of the model is verified on the RCAE dataset of public reading comprehension.The experimental results show that compared with the existing machine reading comprehension models including ElimiNet,MRU and HCM,the proposed model increases the prediction accuracy to 52.5%,and its comprehensive performance is better.
关 键 词:机器阅读理解 多项选择 时间卷积网络 注意力机制 深度学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254