Wettability alteration analysis of smart water/novel functionalized nanocomposites for enhanced oil recovery  

在线阅读下载全文

作  者:Sara Habibi Arezou Jafari Zahra F.akhroueian 

机构地区:[1]Chemical Engineering Faculty,Tarbiat Modares University,Tehran,Iran [2]School of Chemical Engineering,College of Engineering,Institute of Petroleum Engineering,University of Tehran,Tehran,Iran

出  处:《Petroleum Science》2020年第5期1318-1328,共11页石油科学(英文版)

基  金:the National Iranian Oil Company and Tarbiat Modares University for their support throughout this study。

摘  要:Smart water flooding,as a popular method to change the wettability of carbonate rocks,is one of the interesting and challenging issues in reservoir engineering.In addition,the recent studies show that nanoparticles have a great potential for application in EOR processes.However,little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery.In this study,stability,contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO4^2- and Ca^2+ ions in the presence of nanofluid on EOR processes.The amine/organosiloxane@Al2O3/SiO2(AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here.However,for the first time the application of this nanocomposite along with smart water has been studied in this research.Results show that by increasing the concentrations of calcium and sulfate ions in smart water,oil recovery is improved by 9% and 10%,respectively,compared to seawater.In addition,the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery.Finally,the best performance was observed in smart water containing two times of sulfate ions concentration(SW2 S) with nanofluids,showing increased efficiency of about 7.5%.

关 键 词:Smart water NANOFLUID Wettability alteration Contact angle STABILITY Enhanced oil recovery 

分 类 号:TE357[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象