黑臭水体水面阴影提取的自适应阈值算法研究  被引量:6

Adaptive Threshold for Surface Shadow Detection of Black and Odor Water

在线阅读下载全文

作  者:许佳峰 李云梅[1] 徐杰[1] 雷少华 毕顺 周玲[1] XU Jiafeng;LI Yunmei;XU Jie;LEI Shaohua;BI Shun;ZHOU Ling(Key Laboratory of Virtual Geographic Environment,Ministry of Education,Nanjing Normal University,Nanjing 210023,China)

机构地区:[1]南京师范大学虚拟地理环境教育部重点实验室,南京210023

出  处:《地球信息科学学报》2020年第10期1959-1970,共12页Journal of Geo-information Science

基  金:国家重点研发计划项目(2017YFB0503902)。

摘  要:黑臭水体水面阴影对水面光谱信息产生干扰,严重地影响了利用高空间分辨率遥感数据进行水质状况监测的精度,因此,在数据预处理中必须进行阴影剔除。本研究基于无人机高光谱遥感数据,通过分析各种波段组合下黑臭水体水面的阴影像元和水体像元的光谱特征空间,选择以492、666和792 nm处的反射率建立黑臭水体的河面阴影指数(RSSI),并利用最大类间方差法(OTSU)自动确定划分本影、半影以及水体的阈值。利用南京金川河和龙江河的无人机高光谱遥感影像对算法进行测试,结果表明:RSSI阴影指数能突出显示阴影与水体的差异;OTSU自适应确定的阈值能较好地区分本影、半影和水体,阴影的总体识别精度达到85%以上。该算法能够有效地识别黑臭水体水面阴影,为后续开展水体的定性、定量遥感监测提供数据预处理的技术支持。The shadow on black and odor water interfere with the spectral information of the water surface and seriously affects the accuracy of water quality monitoring with high spatial resolution remote sensing data.Therefore,it is necessary to remove the shadow before evaluating river water quality.This paper tries to constructan objective and efficient shadow recognition algorithm on black and odor water to reduce the interference of adjacent object and improve the accuracy of remote sensing monitoring and evaluation of river water quality.In this study,the shadow and water pixels were sampled based on the hyperspectral remote sensing data of Unmanned Aerial Vehicle(UAV).The spatial distribution of different band combinations was analyzed by means of spectral feature spatial analysis to obtain spectral band combinations that can effectively distinguish water and water surface shadows,and the coefficients of band combinations were calibrated to obtain the best discrimination effect.By comparing the discernibility of shadow and non-shadow water by various band combinations,it was found that the ration of remote sensing reflectance Rrs(666)/Rrs(791)combining with Rrs(492)has a higher discrimination between water pixels and shadow pixels.Therefore,remote sensing reflectance at 492 nm,666 nm and 792 nm were selected to establish the River Surface Shadow Index(RSSI).In general,the threshold of distinguishing shadow and non-shadow pixels needs to be adjusted according to different images.In this case,manually adjusting the threshold may produce errors,which are difficult to apply to other images.In order to reduce the error caused by artificial threshold calibration,the maximum category variance method(OTSU)was adopted to automatically determine the threshold of shadow recognition.According to the complexity of the riverbank object,the reflectance spectra of the shadows were classified to two types:umbra and penumbra.The magnitude difference between penumbra and umbra reflectance was similar to that between penumbra and water

关 键 词:水面阴影 无人机高光谱影像 阴影指数 OTSU 本影 半影 黑臭水体 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置] X52[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象