基于改进贝叶斯分类的电机轴承故障诊断系统研究  被引量:7

Fault Diagnosis System of Motor Bearing Based on Improved Bayesian Classification

在线阅读下载全文

作  者:杨晓珍 周继续 邓举明 YANG Xiaozhen;ZHOU Jixu;DENG Juming(College of Intelligent Manufacturing and Information Engineering,Yaan Vocational College,Yaan Sichuan 625100,China;Institute of Oceanography,Chinese Academy of Sciences,Qingdao Shandong 266071,China;Operation Branch,Qingdao Metro Group Co.,Ltd.,Qingdao Shandong 266041,China)

机构地区:[1]雅安职业技术学院智能制造与信息工程学院,四川雅安625100 [2]中国科学院海洋研究所,山东青岛266071 [3]青岛地铁集团有限公司运营分公司,山东青岛266041

出  处:《机床与液压》2020年第20期172-175,共4页Machine Tool & Hydraulics

摘  要:针对电机轴承故障诊断模型构建时间长、准确率不高的问题,提出一种基于改进贝叶斯分类的故障诊断方法。首先通过小波包变化、粗糙集及主成分分析方法分别构造原始故障特征集、降维后的故障特征集,再将原始故障特征集和降维后的故障特征集输入到改进贝叶斯分类模型中实现故障诊断,以此为基础设计一套交流发电机轴承故障诊断系统。最后以国内车辆车载电机轴承振动数据为依据,将改进贝叶斯分类方法和神经网络及最小二乘支持向量机方法作对比分析,结果表明:改进贝叶斯分类方法建模时间更短,故障诊断准确率更高。The problem of long time and low accuracy of the generator bearing fault diagnosis model was considered,and a fault diagnosis method based on improved naive Bayesian classification was proposed.Taking a subway axial flow fan bearing vibration data as the foundation,the feature set of the original fault and the fault feature set after reducing the dimension were constructed separately by using the method of wavelet packet transform,rough set and principal component analysis.The original fault feature set and the dimensionality reduction feature set were input into the simple Bias classification model.On this basis,the fault diagnosis system of alternator bearing was designed.Finally,the improved Bayesian classification method,the neural network and least squares support vector machine method were compared and analyzed based on the vibration data of bearing of a metro vehicle.The results show the modeling time is shorter and the accuracy of fault diagnosis is higher based on the improved Bayesian classification method.

关 键 词:电机轴承 故障诊断 小波包 贝叶斯 

分 类 号:TH432.1[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象