检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jerzy Krawczyk
机构地区:[1]Strata Mechanics Research Institute,Polish Academy of Sciences,Reymonta 27,30-059 Krakow,Poland
出 处:《International Journal of Mining Science and Technology》2020年第5期675-682,共8页矿业科学技术学报(英文版)
基 金:The results presented in this paper are the result of the PICTO research project titled"Production Face Environmental Risk Minimization in Coal and Lignite Mines”,No.800711,financed by the Research Programme of the Research Fund for Coal and Steel(RFCS)and Polish MNiSW No W93/FBWiS/2018 and the statutory research funds of the Institute.
摘 要:Underground coal mining frequently uses longwalls.The occurrence of a potentially explosive mixture of methane and air is one of the most serious hazards.A large number of papers have applied numerical modeling of methane propagation in research aimed at this problem.To date,none of the CFD simulations has considered the movement of the shearer in the analyses.This paper proposes an adaptation of a method used for the description of the movement of trains in tunnels to a specific geometry of a longwall district.The flow of the air-methane mixture was calculated using the finite volume method,in particular the k-w SST and SAS turbulence models.Due to the movement of the shearer,moving and deforming meshes were used for simulation of unsteady flows.Examples of solutions for two hypothetical cases are presented.Finally,the drawbacks and advantages of presented methods are discussed.Further development with the application of either local mesh variability or overset meshes is outlined.
关 键 词:Longwall mining Mine ventilation Finite volume method SHEARER Methane propagation
分 类 号:TD712[矿业工程—矿井通风与安全] TD72
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62