采煤工作面煤与瓦斯突出危险性智能判识技术分析  

Analysis on Intelligent Identification Technology of Coal and Gas Outburst Risk in Coal Mining Face

在线阅读下载全文

作  者:李海涛 Li Haitao(Malan Mine,Xishan Coal Electricity Group Co.,Ltd.,Gujiao Shanxi 030205)

机构地区:[1]山西西山煤电股份有限公司马兰矿,山西古交030205

出  处:《山西冶金》2020年第5期61-62,72,共3页Shanxi Metallurgy

摘  要:为了准确智能识别采煤工作面煤与瓦斯突出危险性,需要对采掘工程扰动因素对煤与瓦斯突出动态影响进行充分考虑,在此过程中选择相关因素作为采煤工作面煤与瓦斯突出的影响因素:瓦斯压力、含量以及地质构造等,并且在此基础上根据矿山压力提出影响因素的动态计算方法。应用人工神经网络方法,构建智能识别模型,以此对工作面回采期间不同区域突出危险性的动态预测以及分级管理。In order to accurately and intelligently identify the risk of coal and gas outburst in coal mining face,it is necessary to fully consider the dynamic influence of mining engineering disturbance factors on coal and gas outburst.In this process,relevant factors are selected as the influencing factors of coal and gas outburst in coal mining face:gas pressure,content and geological structure,and on this basis,the dynamic calculation method of influencing factors is put forward according to the mine pressure.In this paper,the artificial neural network method is applied to build the intelligent recognition model,so as to dynamically predict the outburst risk in different areas during the mining period and to manage the classification.

关 键 词:采煤工作面煤 瓦斯突出危险性 智能判识技术 

分 类 号:TD713[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象