基于分区域双边滤波的谷粒噪声修复算法  被引量:2

Grain noise restoration algorithm based on sub-regional bilateral filter

在线阅读下载全文

作  者:徐敏 丁友东[1,2] 董荪 张倩倩[1,2] 李傅媛 陈钰[1,2] XU Min;DING Youdong;DONG Sun;ZHANG Qianqian;LI Fuyuan;CHEN Yu(Shanghai Film Academy,Shanghai University,Shanghai 200072,China;Shanghai Film Special Effects Engineering Technology Research Center,Shanghai University,Shanghai 200072,China)

机构地区:[1]上海大学上海电影学院,上海200072 [2]上海大学上海电影特效工程技术研究中心,上海200072

出  处:《上海大学学报(自然科学版)》2020年第5期693-701,共9页Journal of Shanghai University:Natural Science Edition

基  金:国家自然科学基金资助项目(61402278);上海市自然科学基金资助项目(14ZR1415800);上海市科委工程技术研究中心建设专项资助项目(16dz2251300);上海市科委科技攻关资助项目(16511101302)。

摘  要:作为胶片电影中最常见的谷粒噪声,其对应的修复算法虽然很多但却存在过度平滑、复杂度高等诸多缺陷.因此运用RGB通道的相关性,提出一种基于分区域双边滤波的噪声修复算法,目标是去除胶片电影中常见的谷粒噪声,为后续斑点、划痕、稳像、闪烁等修复工作提供质量保证.测试结果表明:运用本算法去噪后的图像不仅能满足人眼的视觉要求,而且其峰值信噪比(peak signal to noise ratio,PSNR)值和结构相似性(structural similarity,SSIM)值明显提高,运行时间也几乎缩短为原来的一半,这不仅会提高旧电影的商业价值,而且对挽救国内外大量史实资料具有重要意义.Grain noise in film films and their corresponding repair algorithms are numerous,but they usually have defects,such as smooth transition and high complexity.Combined with the correlation of RGB channels,a noise restoration algorithm based on a sub-regional bilateral filter was developed in this study to eliminate common grain noise in film films and ensure quality assurance for subsequent repair work,such as spots,scratches,image stabilisation,and scintillation.The test results showed that the de-noised image captured using the proposed algorithm not only satisfied the visual requirements of the human eye but also significantly improved the peak signal-to-noise ratio and structural similarity index measure values and decreased the running time to almost half of the original time.These benefits will not only improve the commercial value of old films but will also save a large amount of historical data.

关 键 词:胶片电影 RGB通道 区域划分 滤波器 谷粒噪声 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象