粤港澳大湾区城市创新效率测算  被引量:3

Measurement on Urban Innovation Efficiency in Guangdong-Hong Kong-Macao Greater Bay Area

在线阅读下载全文

作  者:韩兆洲[1,3] 朱丰毅 黎中彦 Han Zhaozhou;Zhu Fengyi;Li Zhongyan(Department of statistics of Economics College,Jinan University,Guangzhou 510632,China;School of Mathematics and Statistics,Guangdong university of Finance and Economics,Guangzhou 510320,China;Huashang College,Guangdong University of Finance&Economics,Guangzhou 511300,China)

机构地区:[1]暨南大学经济学院统计学系,广州510632 [2]广东财经大学数学与统计学院,广州510320 [3]广东财经大学华商学院,广州511300

出  处:《统计与决策》2020年第20期80-85,共6页Statistics & Decision

基  金:国家社会科学基金重点项目(19ATJ004)。

摘  要:文章通过引入效率方程、个体固定效应以及被解释变量的空间滞后项,构建了固定效应空间滞后随机前沿模型(FE-SAR SFM),运用该模型的极大似然估计方法对粤港澳大湾区11个城市的创新效率进行测算。结果表明:(1)粤港澳大湾区的发明专利研发活动具有显著的“溢出效应”;(2)粤港澳大湾区的专利研发活动的规模报酬不变;(3)粤港澳大湾区城市的创新效率空间分布与专利授权数的空间分布存在差异,专利研发中的资源配置存在改进空间。This paper introduces the efficiency equation,the individual fixed effect and the spatial lagged term of dependent variable to construct a fixed-effect spatial autoregressive stochastic frontier model(FE-SAR SFM),and then uses the maximum likelihood estimation method of the proposed model to estimate the innovation efficiency of 11 cities in Guangdong-Hong Kong-Macao Greater Bay Area.The results show that the R&D activities of invention patents in Guangdong-Hong Kong-Macao Greater Bay Area have significant"spillover effect",that the remuneration for scale of patent R&D activities in the Greater Bay Area remains unchanged,and that there are differences between the spatial distribution of innovation efficiency and that of patent license number in the Greater Bay Area cities,with room for improvement in the allocation of resources in patent R&D.

关 键 词:固定效应 空间滞后 随机前沿模型 创新效率 粤港澳大湾区 

分 类 号:F224.7[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象