经济发展、治理质量与最优政府规模  

Economic Development,Governance Quality and Optimal Government Size

在线阅读下载全文

作  者:郑尚植 陈子昂 夏宁潞 Zheng Shangzhi;Chen Zi’ang;Xia Ninglu(College of Marxism,Dongbei University of Finance&Economics,Dalian Liaoning 116025,China;School of Economics and Management,Wuhan University 430072,China;School of Economics,Xiamen University,Xiamen Fujian 361005,China)

机构地区:[1]东北财经大学马克思主义学院,辽宁大连116025 [2]武汉大学经济与管理学院,武汉430072 [3]厦门大学经济学院,福建厦门361005

出  处:《统计与决策》2020年第20期157-162,共6页Statistics & Decision

基  金:国家社会科学基金青年项目(16CJY063)。

摘  要:如何理解和确定政府的最优规模,这不仅是发达国家,也是转轨国家和发展中国家需要关注的问题。鉴于中国在经济发展与转型双重背景下政府与市场关系的特殊性,我们必须重新思考应该如何正确理解政府的最优规模以及如何准确估算政府的最优规模。文章基于“Armey曲线”的主要缺陷和经验文献的结果争议,对现有的最优政府规模理论进行反思批评,采用嵌入政府质量和面板门槛模型的实证检验方法,发现在考虑经济发展和治理质量情况下,我国最优政府规模被大大低估;在考虑不同区域差异性和不同时间的情况下,我国最优政府规模呈现出地区异质性和时间动态性。How to understand and determine the optimal size of government is not only an issue for developed countries,but also for countries in transition and developing countries.In view of the particularity of the relation between the government and the market in the context of economic development and transformation,we have to reconsider how to correctly understand and how to accurately estimate the optimal size of the government.This paper is based on the main defects of Armey curve and the controversial results of the empirical literature to reflect on and criticize the existing theory about optimal government size.Then,the paper adopts the empirical tests method embedded with government efficiency and panel threshold model to discover that the optimal government size is greatly underestimated when considering the quality of economic development and governance,and that considering the difference between different regions and different times,the optimal government size in China presents regional heterogeneity and temporal dynamics.

关 键 词:最优政府规模 ARMEY曲线 治理质量 面板门槛模型 

分 类 号:F061.3[经济管理—政治经济学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象