检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴琴 陈建春[1] 乜亮 WU Qin;CHEN Jianchun;NIE Liang(School of Electronic Engineering,Xidian University,Xi′an 710071,China)
机构地区:[1]西安电子科技大学电子工程学院,西安710071
出 处:《电讯技术》2020年第11期1325-1329,共5页Telecommunication Engineering
摘 要:针对面阵中的波达方向估计算法复杂度过大的问题,提出了一种改进的基于传播算子的二维面阵波达方向(Direction of Arrival,DOA)估计算法。该改进算法基于面阵平移不变性质,将原始子面阵在X和Y轴上分别平移得到两个子面阵,将两个子面阵相加得到虚拟子面阵,利用原始子阵和虚拟子面阵构造新的信号矢量,基于传播算子算法求出其特征值,特征值中的模值和相位值包含信源的二维角度信息,由此可求出自动配对的二维角度。与基于传播算子的二维DOA估计算法相比,该算法有效降低了运算复杂度,且保持性能相近。仿真实验验证了算法的有效性。For the high computational complexity of the direction of arrival(DOA)estimation algorithm in planar array,a modified two-dimensional(2D)DOA estimation algorithm based on propagator method is proposed.The new algorithm is originated in the invariant nature of the uniform planar array translation.By shifting the original sub-array along the X and Y axes respectively,the two sub-arrays are obtained.The received signal vectors from the two sub-arrays are added together to form a new signal vector which is as that from a virtual sub-array.An extended signal vector is constructed by putting this new signal vector together with that from the original sub-array,and the eigenvalues of its covariance matrix are derived based on the propagator method.The moduli and phase angles of the eigenvalues contain the 2D angular information of the incident signals and the auto-paired 2D angles can be achieved.Compared with the present 2D DOA estimation algorithm based on propagator method,the computational complexity of the new algorithm is significantly reduced while the performance is similar.Simulation experiments verify the effectiveness of the new algorithm.
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38