检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高万泉[1] 李玉娥[1] GAO Wanquan;LI Yu'e
机构地区:[1]保定市气象局,河北保定071000
出 处:《山西科技》2020年第6期59-63,共5页Shanxi Science and Technology
摘 要:为了寻求最好的温度预报方法,进一步提高温度预报质量,利用2016—2018年的ECMWF细网格产品资料,对目前常用的3种MOS预报方案——经典MOS预报、动态回归预报、相似回归预报进行了对比应用试验,并针对动态回归的最优训练期日数进行了探寻。结果显示:这3种MOS预报方案预报质量均较高,达到了目前实际业务需要,对预报员有很大的参考价值。3种方案中动态回归预报最优,动态回归的最佳训练期日数最低、最高气温略有不同,最低气温的训练期日数为35~40天,最高气温的训练期日数为20~35天。In order to find the best temperature forecasting method,further improve the temperature forecasting quality,and use the ECMWF fine grid product data to compare the three commonly used MOS forecasting schemes:classical MOS forecasting,dynamic regression forecasting and dynamic similarity regression forecasting.The optimal training period days for dynamic regression were explored.The results show that the forecast quality of these three MOS forecasting schemes is high,which meets the current actual business needs and has great reference value for forecasters.The dynamic regression forecasting is the best among the three schemes,the best training days of dynamic regression for minimum and the maximum temperature are slightly different.The best training days of minimum temperature are 35~40 days and the best training days of maximum temperature are 20~35 days.
分 类 号:P456.7[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.11.68