检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张斌 李建 马锦程 何仁杰 ZHANG Bin;LI Jian;MA Jincheng;HE Renjie(College of Metrology and Measurement Engineering,China Jiliang University,Hangzhou 310018,China)
机构地区:[1]中国计量大学计量测试工程学院,浙江杭州310018
出 处:《中国计量大学学报》2020年第3期378-385,共8页Journal of China University of Metrology
基 金:浙江省自然科学基金项目(No.LY17E050015)。
摘 要:目的:实现磁导航AGV的最优路径规划,提高AGV系统的运行效率。方法:基于赋时Petri网理论构建磁导航AGV系统模型,结合改进的Dijkstra算法对AGV进行动态路径规划与避让。首先以磁导航AGV为研究对象,利用改进Dijkstra算法实现单AGV的路径规划;其次以赋时Petri网理论构建磁导航AGV系统模型,然后将AGV系统模型与单AGV的路径规划算法相结合,实现多AGV的路径规划与调度。结果:通过仿真和实际运行,发现所提出方法在多种情况下都能有效解决AGV的动态避让问题,获得最优的AGV路径。结论:本文的研究内容对于保证磁导AGV系统运行的可靠性、稳定性,提升其运行效率,具有十分重要的意义。Aims:This paper aims to realize the optimal path planning of magnetic navigation AGV to improve the operating efficiency of the AGV system.Methods:Based on the timed Petri net theory,the magnetic navigation AGV system model was constructed and combined with the improved Dijkstra algorithm to dynamically plan and avoid the AGV.First,the magnetic navigation AGV was used as the research object;and the improved Dijkstra algorithm was used to realize the path planning of a single AGV.Secondly,the magnetic navigation AGV system model was constructed based on the timed Petri net theory;and then the AGV system model was combined with the path planning algorithm of the single AGV to achieve Path planning and scheduling for multiple AGVs.Results:Through simulation and actual operation,it was found that the proposed method could effectively solve the dynamic avoidance problem of AGV in various situations and obtain the optimal AGV path.Conclusions:The research content of this article is of great significance for ensuring the reliability and stability of the magnetic-permeable AGV system and improving its operating efficiency.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170