基于小波树稀疏结构的磁共振成像快速重构算法  被引量:1

Fast reconstruction algorithm of magnetic resonance imaging based on wavelet tree sparsity structure

在线阅读下载全文

作  者:鲍中文 段继忠 杨俊东[2] BAO Zhongwen;DUAN Jizhong;YANG Jundong(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,Yunnan,China;School of Information Science and Engineering,Yunnan University,Kunming 650500,Yunnan,China)

机构地区:[1]昆明理工大学信息工程与自动化学院,云南昆明650500 [2]云南大学信息学院,云南昆明650500

出  处:《陕西师范大学学报(自然科学版)》2020年第6期1-9,共9页Journal of Shaanxi Normal University:Natural Science Edition

基  金:国家自然科学基金(61861023);昆明理工大学引进人才科研启动基金(省级人培)(KKSY20170301);云南科技计划重点项目(2018ZF017)。

摘  要:为提高磁共振成像的重构速度,提出了一种基于小波树稀疏结构的磁共振成像快速重构算法,即基于小波树稀疏结构,结合L 1正则项和TV正则项的共同约束,与最小二乘保真项构成重构问题;首先分离变量,之后采用交替方向乘子法将重构问题分解为多个易于求解的子问题,针对每个子问题得到其解析解,从而有效地提高了重构算法的效率。实验结果表明:在不同的数据集下,本文算法的成像重构速度比WaTMRI算法平均快约3.3倍。In order to enhance the reconstruction speed of magnetic resonance imaging,a new fast reconstruction algorithm of magnetic resonance imaging based on wavelet tree sparse structure is proposed.Based on the wavelet tree sparse constraint,combining L 1 regularization term and TV regularization term constraint,and least square fidelity term constitutes a reconstruction optimization.First,the variable splitting method is used to separate the variables,and then the alternating direction method of multipliers is used to decompose the reconstruction problem into several easy-to-solve subproblems.The solution of each sub-problem can obtain an analytical solution,which can effectively increase the reconstruction performance of magnetic resonance imaging.The experimental results show that the reconstruction effect of our algorithm is better than the comparative WaTMRI algorithm,and the imaging reconstruction speed is about 3.3 times faster than the WaTMRI algorithm on average.

关 键 词:磁共振成像 压缩感知 小波树稀疏 交替方向乘子法 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象