检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周晓莺[1] 余梓唐[1] 全秋燕[1] ZHOU Xiao-ying;YU Zi-tang;QUAN Qiu-yan(Yiwu Industrial and Commercial College,Yiwu 322000,China)
出 处:《塑料科技》2020年第10期93-95,共3页Plastics Science and Technology
基 金:浙江省教育厅一般科研项目(Y201942569)。
摘 要:借鉴空域富模型高通滤波器、量化截断机制和卷积神经网络特性,设计宽约束型包装袋垃圾分类模型。研究结果表明:方案八设计的2种量化截断机制捕获到2种约束型残差特征图,有利于特征汇聚;且应用设计的2种子卷积神经网络捕获到多样化包装袋信息,对包装袋垃圾的识别分类准确率为66.2%,高于传统HOG模型约6%。Based on the high-pass filter of the spatial rich model,the quantitative truncation mechanism and the characteristics of the convolutional neural network,a wide-constrained packaging bag garbage classification model is designed.The research results show that:scheme eight uses the two quantitative truncation mechanisms to capture two constrained residual feature maps,which is conducive to feature aggregation,and the two-seed convolutional neural network designed to capture diversified packaging bag information is useful for packaging.The accuracy rate of bag garbage identification and classification is 66.2%,which is about 6%higher than the traditional HOG model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222