检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周奎 ZHOU Kui(Jiangsu Vocational College of Electronics and Information,Huaian 223003,China)
出 处:《塑料科技》2020年第10期112-114,共3页Plastics Science and Technology
摘 要:塑料薄膜工业生产过程中,张力控制系统存在明显的非线性和滞后性,严重影响了塑料薄膜产品的质量。为了提高塑料薄膜张力控制系统的控制精度以及动态性能,基于神经网络对系统进行状态预测,并利用预测的系统状态设计了反馈控制器。通过神经网络在线辨识动态非线性模型,构建了神经网络动态辨识器;运用泰勒级数展开法计算预测未来时刻的神经网络权值,并建立状态预测器;根据预测状态设计了塑料薄膜张力系统的反馈控制器;通过对比仿真实验验证了所设计反馈控制器能够明显改善塑料薄膜张力控制系统的控制精度及控制性能。In the plastic film industrial production process,the tension control system has obvious nonlinearity and large hysteresis,which has great impact on the quality of plastic film products.In order to improve the control accuracy and dynamic performance of the plastic film tension control system,the state of the system is predicted based on the neural network,and a feedback controller is designed using the predicted system state.The dynamic nonlinear model is identified by the neural network,and the neural network dynamic identifier is constructed;the Taylor series expansion method is used to calculate the weight of the neural network to predict the future time,and the state predictor is established;the plastic film tension system is designed according to the predicted state Feedback controller;finally,it is verified through comparative simulation experiments that the designed feedback controller can significantly improve the control accuracy and control performance of the plastic film tension control system.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222