检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张维[1] 赵亮[2] ZHANG Wei;ZHAO Liang(School of Environment Science and Spatial Informatics,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;School of Building Intelligence,Jiangsu Architecture Institute,Xuzhou Jiangsu 221116,China)
机构地区:[1]中国矿业大学环境与测绘学院,江苏徐州221116 [2]江苏建筑职业技术学院建筑智能学院,江苏徐州221116
出 处:《激光杂志》2020年第11期100-104,共5页Laser Journal
基 金:江苏省建设系统科技项目(No.2018ZD328);江苏省建设系统科技项目(No.2018ZD295);徐州市科技项目(No.KC19198)。
摘 要:传统的建筑物轮廓识别方法,由于获取到的角点数据存在偏差,导致生成的建筑物轮廓矢量图效果差,因此提出了激光技术和遥感信息相融合的建筑物轮廓识别。利用垂直入射式扫描、斜入射扫描获取密集点云数据;根据遥感信息完善点云数据,结合仿射变换公式,使用最小二乘法拟合控制点,实现数据匹配;在此基础上采用二值化方法处理建筑物图像,将其膨胀、填充、腐蚀处理,并根据角点位置调整线段间的衔接,得出轮廓矢量化结果。实验测试表明:方法获得的点云数据密集、完整,生成的轮廓矢量图与实际建筑物之间的匹配程度最高,改善了建筑物轮廓的识别效果。In the traditional method of building contour recognition,because of corner data deviation,the effect of building contour vector image is poor,so a building contour recognition method based on the fusion of laser technology and remote sensing information is proposed.Using vertical incidence scanning and oblique incidence scanning to obtain dense point cloud data;perfecting point cloud data according to remote sensing information,combining with affine transformation formula,using least square method to fit control points to achieve data matching.On this basis,using binary method to process building image,processing its expansion,filling and corrosion,and adjusting connection between line segments according to position of corner points The result of contour vectorization is given.The experimental results show that the point cloud data obtained by this method is dense and complete,and matching degree between generated contour vector map and the actual building is the highest,which improves the recognition effect of building contour.
分 类 号:TN279[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.156.19