一种适用于大偏心率轨道密集星历精密计算的快速处理方法  被引量:1

An Efficient and Precise Method for Calculating the Dense Ephemeris of High Eccentricity Orbit

在线阅读下载全文

作  者:戴志军 徐劲[1,3] DAI Zhi-jun;XU Jin(Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023;University of Chinese Academy of Sciences,Beijing 100049;Key Laboratory of Space Object and Debris Observation,Nanjing 210023)

机构地区:[1]中国科学院紫金山天文台,南京210023 [2]中国科学院大学,北京100049 [3]中国科学院空间目标与碎片观测重点实验室,南京210023

出  处:《天文学报》2020年第6期64-77,共14页Acta Astronomica Sinica

基  金:国家自然科学基金项目(11403106)资助。

摘  要:空间目标探测和编目是航天器安全的重要课题,空间目标数量巨大,造成轨道计算的工作量十分繁重.分析方法虽然计算速度快,却不能适应高精度观测资料的处理工作,因而数值方法将成为目标轨道计算的重要方法.空间目标编目工作普遍涉及密集星历的产生和计算问题,针对这一问题的大偏心率轨道数值计算目前尚未形成兼具计算精度和计算效率的有效技术手段,难以满足编目工作的处理要求.在此背景下,提出一种适用于大偏心率轨道密集星历精密计算的快速处理方法,并通过数值实验对模型参数进行优选,最后通过计算实例证实了该计算方案的优越性.Space target detection and cataloging are an important topic for spacecraft safety,the large number of space targets makes the workload of orbit calculation very heavy.Although the analysis method has a fast calculation speed,it cannot adapt to the processing of high-precision observational data.Therefore,the numerical method will become an important method for the calculation of the target orbit.The spatial target cataloging work generally involves the generation and calculation of dense ephemeris,and the numerical calculation of large eccentricity orbits for this problem has not yet formed an effective technical means with both calculation accuracy and calculation efficiency,which is difficult to meet the processing requirements of cataloging.Under this background,a fast processing method suitable for the precise calculation of dense orbital ephemeris with large eccentricity is proposed,and the model parameters are optimized through numerical experiments.Finally,the superiority of the calculation scheme is confirmed by calculation examples.

关 键 词:大椭率轨道 密集星历 高精度 高时效 

分 类 号:P135[天文地球—天体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象