检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱新挺 陈志坤 彭冬亮[1] Zhu Xinting;Chen Zhikun;Peng Dongliang(School of Automation,Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China)
机构地区:[1]杭州电子科技大学自动化学院,浙江杭州310018
出 处:《信号处理》2020年第10期1708-1713,共6页Journal of Signal Processing
基 金:国家自然科学基金资助项目(61701148);国防科技创新特区项目。
摘 要:针对复杂电磁环境中信号检测受限于低信噪比的问题,基于信号与噪声一体化的思路,提出了一种以电磁空间的所有电磁辐射信号为背景,并结合深度学习算法的电磁信号检测方法。首先建立动态场景的电磁环境模型,包括了通信基站信号、雷达信号、干扰信号等,其次使用加高斯窗傅里叶变换提取电磁信号时频域的能量分布特征,最后采用卷积神经网络进行特征选择分类,实现信号检测。仿真结果表明,该方法在一定程度上减轻了信号检测受限于信噪比的问题,克服了传统能量检测方法和基于SVM检测方法的缺陷,提高了低信噪比下电磁信号的检测性能。For the problem that signal detection is limited by low SNR(Signal-to-Noise Ratio)in complex electromagnetic environment,based on the integration of signal and noise,with the background of all electromagnetic radiation signals in electromagnetic space and deep learning algorithm,a signal detection method is proposed.First,the electromagnetic environment model of the dynamic scene is established,including communication base station signals,radar signals,interference signals,etc.Second,the energy distribution characteristics of the electromagnetic signal in the time-frequency domain are extracted with the Gaussian window Fourier transform.Finally,the convolutional neural network is used for feature selection and classification to achieve the purpose of signal detection.The simulation results show that this method alleviates problem of signal detection limited by SNR to a certain extent,overcomes the defects of traditional energy detection methods and SVM(Support Vector Machines)-based detection methods,and improves the detection performance of electromagnetic signal under low SNR.
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63