检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Jiahui GUO Yi WANG Zhihong TANG Qifeng WEN Xinxiu
机构地区:[1]East China University of Science and Technology,Shanghai 200237,China [2]National Engineering Laboratory for Big Data Distribution and Exchange Technologies,Shanghai 200436,China [3]Shanghai Engineering Research Center of Big Data and Internet Audience,Shanghai 200072,China
出 处:《Chinese Journal of Electronics》2020年第6期1134-1140,共7页电子学报(英文版)
基 金:supported by the National Key Research and Development Program of China(No.2018YFC0807105);the National Natural Science Foundation of China(No.61462073);the Science and Technology Committee of Shanghai Municipality(No.17DZ1101003,No.18511106602,No.18DZ2252300).
摘 要:Graph convolution networks are extremely efficient on the graph-structure data,which both consider the graph and feature information.Most existing models mainly focus on redefining the complicated network structure,while ignoring the negative impact of lowquality input data during the aggregation process.This paper utilizes the revised Laplacian matrix to improve the performance of the original model in the preprocessing stage.The comprehensive experimental results testify that our proposed model performs significantly better than other off-the-shelf models with a lower computational complexity,which gains relatively higher accuracy and stability.
关 键 词:Graph convolution network CLUSTERING Label propagation Laplacian matrix Graph structure Fraud detection
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222