基于启发式遗传算法的高效虚拟骨干网构建  

Construction of Efficient Virtual Backbone Network Based on Heuristic Genetic Algorithm

在线阅读下载全文

作  者:袁明兰 李林[2] 何守亮 YUAN Ming-lan;LI Lin;HE Shou-liang(Department of Commerce and Trade Management, Chongqing Business Vocational College, Chongqing 401331,China;College of Computers Science, University of Electronic Science and Technology of China, Chengdu 611713, China;Department of Intelligent Manufacturing and Tourism Transportation, Chongqing Vocational Institute of Tourism, Chongqing 409099,China)

机构地区:[1]重庆商务职业学院商贸管理系,重庆401331 [2]电子科技大学计算机学院,成都611713 [3]重庆旅游职业学院智能制造与旅游交通系,重庆409099

出  处:《西南师范大学学报(自然科学版)》2020年第11期86-92,共7页Journal of Southwest China Normal University(Natural Science Edition)

基  金:重庆市教委科学技术研究项目(KJQN201805301);重庆市教委教改重点课题(192089).

摘  要:为了解决无线传感网络因节点电池容量有限而导致其网络寿命和计算能力受限的问题,本文提出了一种基于启发式遗传算法的无线传感网络均衡节能虚拟骨干网构建(Balanced Energy Efficient Virtual Backbone Construction,BEE-VBC)算法.该算法通过综合考虑多种因素设计的适应度函数来选择最佳节点集,通过基于启发式遗传算法确定最优的连通支配集(Connected Dominating Set,CDS)来确保支配节点的连通性,将最优CDS用作向基站进行数据传输和转发的虚拟骨干网.实验表明与其他算法相比,本文BEE-VBC算法在网络寿命、平均能耗和数据包传输率等方面均优于现有方法.To solve the problem that the wireless sensor network has limited network lifetime and computing power due to limited battery capacity of the node.A heuristic genetic algorithm based wireless sensor network balanced energy efficient virtual backbone construction algorithm is proposed in this paper.The algorithm selects the optimal node set by comprehensively considering the fitness function designed by multiple factors,the optimal connected dominating set is determined based on heuristic genetic algorithm to ensure the connectivity of dominant nodes,and uses the optimal CDS as the virtual backbone network for data transmission and forwarding to the base station.Experiments show that compared with other algorithms,the BEE-VBC algorithm in this paper is superior to the existing algorithm in terms of network lifetime,average energy consumption and packet delivery rate.

关 键 词:适应度函数 启发式遗传算法 连通支配集 虚拟骨干网 网络寿命 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象