基于锌锗二元氧化物的光热协同分解CO2研究  被引量:1

Photo-thermochemical CO Splitting Based on Zinc-germanium Binary Oxide

在线阅读下载全文

作  者:张旭寒 邓博文[1] 范海东 黄文辉 张彦威[1] Zhang Xuhan;Deng Bowen;Fan Haidong;Huang Wenhui;Zhang Yanwei(State Key Laboratory of Clean Energy Utilization,Zhejiang University,Hangzhou 310027,China;Key Laboratory of Solar Energy Utilization&Energy Saving Technology of Zhejiang Province,Zhejiang Provincial Energy Group Co Ltd.,Hangzhou 310000,China)

机构地区:[1]浙江大学能源清洁利用国家重点实验室,杭州310027 [2]浙江省能源集团有限公司浙江省太阳能利用及节能技术重点实验室,杭州310000

出  处:《化学学报》2020年第10期1120-1126,共7页Acta Chimica Sinica

基  金:国家自然科学基金(No.51976190);浙江省自然科学基金(LR18E060001);中央高校基本科研业务费专项资金(No.2019FZA4013)资助。

摘  要:本工作为非Ti基光热协同材料研究,使用溶液沉淀法制备了ZnO/Zn2GeO4复合材料(Z/ZGO)应用于光热协同分解CO2.使用透射电子显微镜(TEM)、X射线衍射技术(XRD)、紫外可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)等表征手段对材料的形貌、光响应以及氧空位对反应的影响进行研究.锌锗二元氧化物复合材料综合两种半导体的优势,形成异质结,扩展了材料光谱响应范围,提高了材料氧空位形成能力,使得CO产率提高至单纯ZnO样品的5.55倍,并具有较好的循环稳定性.对扩展光热协同催化材料体系,进一步深化光热协同反应机理以及提升反应产率具有一定的前瞻和指导作用.Using solar energy to split CO2 can realize the conversion and storage of solar energy at the same time, and alleviate the carbon emissions caused by the transitional use of fossil energy. Solar energy based photo-thermochemical reaction is a promising method for the CO2 splitting. To further study the photo-thermochemical reaction mechanism and explore the non-titanium-based catalytic materials, the ZnO/Zn2 GeO4 composite material(Z/ZGO) was prepared by solution precipitation method and used for photo-thermochemical CO2 splitting. Composite semiconductor combined the advantages of the two components which made CO production reach 5.55 times that of pure ZnO. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS) were used to illustrate the crystal structure and chemical composition of the samples. The XRD pattern found that the samples crystallized well, and no obvious crystal form changes occurred after the reaction. Using SEM to observe the samples before and after the reaction, the particle size did not increase significantly and no obvious sintering phenomenon was found, which indicated that the material has good reaction stability. Photoluminescence(PL), UV-visible diffuse reflectance spectra(UV-visible DRS) and Mott-Schottky plots were used to evaluate the material’s light absorption characteristics and energy band position. The band gap of ZnO and Zn2 GeO4 samples were 3.27 eV and 4.56 eV, respectively, and the heterojunction was formed in the Z/ZGO sample. The presence of ZnO extended the spectral response range of Zn2 GeO4, and due to the migration of photogenerated electron-hole pairs(EHPs) to Zn O, the recombination of EHPs was reduced. XPS analyses were also used to investigate change of oxygen vacancies during the reaction. The O 1 s XPS spectra of the samples in the three cases(Case A: before light irradiation, Case B: after light irradiation and Case C: after reaction) were a

关 键 词:CO2分解 氧空位 光热协同反应 异质结 Zn基氧化物 

分 类 号:X701[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象