深度学习预测GPS时间序列在探索门源M_S6.4地震前兆中的应用  被引量:2

Application of Deep Learning to Predict GPS Time Series in Exploring Precursors of Menyuan M_S6.4 Earthquake

在线阅读下载全文

作  者:陈善鹏 尹玲 梁诗明[2] 胡向阳 余小燕 CHEN Shanpeng;YIN Ling;LIANG Shiming;HU Xiangyang;YU Xiaoyan(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,333 Longteng Road,Shanghai 201620,China;State Key Laboratory of Earthquake Dynamics,Institute of Geology,CEA,A1 Huayanli,Beijing 100029,China)

机构地区:[1]上海工程技术大学电子电气工程学院,上海市201620 [2]中国地震局地质研究所地震动力学国家重点实验室,北京市100029

出  处:《大地测量与地球动力学》2020年第12期1248-1253,共6页Journal of Geodesy and Geodynamics

摘  要:以2016-01-21门源MS6.4地震为例,提出用深度学习预测的GPS时间序列研究地震前兆。用震中附近门源台(QHME)、民乐台(GSML)及古浪台(GSGL)无震时的GPS时间序列训练LSTM神经网络,得到高精度的GPS时间序列预测模型,再分别对该地区无震时和地震前一段时间的GPS时间序列进行回溯性预测。对比预测时间序列与真实时间序列发现,震前2条时间序列大部分的相似性指标比无震时低,说明震前预测时间序列与真实时间序列差异明显,同时考虑震前时间序列的趋势异常,认为出现了异常时段;3个台站分别在E、N、U方向出现多个异常日期,且不同台站具有相同的异常日期,说明探索到了地震前兆。This paper proposes to use GPS time series predicted by deep learning to study earthquake precursors,taking the earthquake of MS6.4 in Menyuan,on January 21,2016 as an example.To obtain a high-precision GPS time series prediction model,the LSTM neural network is trained with GPS time series of historical non-seismic time series of Menyuan station(QHME),Minle station(GSML)and Gulang station(GSGL)near the epicenter,and then the GPS time series of non-seismic time series and the period of time before the earthquake in the region are predicted retroactively.Through comparative analysis of the predicted time series and the real time series,we find that most indexes of the similarity between the two time series before the earthquake are lower than those of the time series without the earthquake,which indicates that the predicted time series before the earthquake is obviously different from the real time series.Meanwhile,considering the trend anomaly of the time series before the earthquake,the abnormal time period is considered to have occurred.The three stations have multiple abnormal dates in E,N and U directions,and different stations have the same abnormal date.The discovery of abnormal periods and abnormal dates indicates that earthquake precursors have been explored.

关 键 词:门源地震 GPS时间序列 LSTM神经网络 前兆异常 

分 类 号:P315[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象