检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张玲[1] 张旭波 徐泽宇 欧强 ZHANG Ling;ZHANG Xu-bo;XU Ze-yu;OU Qiang(Institute of Geotechnical Engineering,Hunan University,Changsha 410082,China)
机构地区:[1]湖南大学岩土工程研究所,湖南长沙410082
出 处:《岩土工程学报》2020年第11期2040-2049,共10页Chinese Journal of Geotechnical Engineering
基 金:国家自然科学基金项目(51678231,52078205);国家自然科学基金青年项目(51978255);湖南省自然科学基金项目(2020JJ3013)。
摘 要:因土工格栅套筒的环箍效应,筋箍碎石桩的受力变形机理较普通碎石桩更为复杂。将筋箍碎石桩单桩的受力变形视为空间轴对称问题,基于辛体系理论构建了可考虑桩体横截面剪应力的辛对偶方程,并对方程进行变量分离,再结合边界条件得到了筋箍碎石桩沉降及径向变形的辛体系解答。通过算例分析验证了方法的合理性与可行性。进一步的参数分析表明:筋箍碎石桩的沉降及鼓胀变形随筋材抗拉刚度的增大而减小;随桩土应力比的增大而增大,但增长率逐渐减小;随加筋深度的增大而减小,但超过最优加筋深度时不再变化;而最优加筋深度则随荷载的增大、桩间距的增大及侧压力系数的减小而相应增大。Due to the hoop effect of geogrids,the stress and deformation mechanism of geosynthetic-encased stone columns(GESCs)is more complex than that of the ordinary stone columns.In this study,the stress and deformation of a single GESC is regarded as a space axisymmetric problem.Based on the symplectic system theory,a symplectic dual equation considering the shear stress of the cross section of the column is formulated,the variables of the equation are separated,and the distribution functions for the settlement and radial deformation of GESCs are finally obtained according to the boundary conditions.The rationality and feasibility of this method are verified by the practical example,and the parameter analysis shows that the settlement and bulging of GESCs decrease with the increase of encasement stiffness.They increase with the increase of pile-soil stress ratio,but the growth rate decreases gradually.They decrease with the increase of encasement depth,but no longer change when they exceed the optimal encasement depth.The optimal encasement depth increases with the increase of load and pile spacing,and with the decrease of lateral pressure coefficient.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.137.108