Nonlinear dynamics of a classical rotating pendulum system with multiple excitations  被引量:1

在线阅读下载全文

作  者:Ning Han Pei-Pei Lu 韩宁;鲁佩佩(Key Laboratory of Machine Learning and Computational Intelligence,College of Mathematics and Information Science,Hebei University,Baoding 071002,China)

机构地区:[1]Key Laboratory of Machine Learning and Computational Intelligence,College of Mathematics and Information Science,Hebei University,Baoding 071002,China

出  处:《Chinese Physics B》2020年第11期230-243,共14页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11702078 and 11771115);the Natural Science Foundation of Hebei Province,China(Grant No.A2018201227);the High-Level Talent Introduction Project of Hebei University,China(Grant No.801260201111).

摘  要:We report an attempt to reveal the nonlinear dynamic behavior of a classical rotating pendulum system subjected to combined excitations of constant force and periodic excitation.The unperturbed system characterized by strong irrational nonlinearity bears significant similarities to the coupling of a simple pendulum and a smooth and discontinuous(SD)oscillator,especially the phase trajectory with coexistence of Duffing-type and pendulum-type homoclinic orbits.In order to learn the effect of constant force on this pendulum system,all types of phase portraits are displayed by means of the Hamiltonian function with large constant excitation especially the transitions of complex singular closed orbits.Under sufficiently small perturbations of the viscous damping and constant excitation,the Melnikov method is used to analyze the global structure of the phase space and the feature of trajectories.It is shown,both theoretically and numerically,that this system undergoes a homoclinic bifurcation and then bifurcates a unique attracting rotating limit cycle.Finally,the estimation of the chaotic threshold of the rotating pendulum system with multiple excitations is calculated and the predicted periodic and chaotic motions can be shown by applying numerical simulations.

关 键 词:rotating pendulum Melnikov method rotating limit cycle chaotic dynamics 

分 类 号:O314[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象